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ABSTRACT

The behavior of a sound pulse in a jet is investigated both experi- |
mentally and numerica]]y.. It is verified that the far field acoustic
power increases with flow velocity for the low and medium frequency range.
Experimentally an attenuation at higher frequencies is also observed.
Spectral decomposition of the time dependent data indicates that the far
field acoustic power has a behavior similar to that of local instability
waves in the jet. The connection between this amplification and the local

instability waves is discussed.
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1. INTRODUCTION

The purpose of this paper is to study the interaction of an acoustic
disturbance with a jet both numerically and experimentally. A preliminary
version of this report appeared in [1]. An attempt will be made
to clarify the relationship between linear stability of the mean profile
of the jet and far field sound. Linear stability theory predicts that the
mean profile of the jet is unstable at any downstream location because of
the inflection point in the shear layer. Thus the linear stability effects
are manifested in the vorticity interactions terms in the equations for the
fluctuating perturbations.

The Lighthill acoustic analogy (see [2] and [3] ) accounts for this
interaction in principle, since it includes as source terms on the right
hand side all of the interaction terms in the Navier-Stokes equations. How-
ever, the Lighthill theory requires prior knowledge of the solution in order
to specify the sources. |

Lighthill did point out, however, that jet noise may be amplified by
shear interaction terms (see [3]). At present, this phenomenon has not been
satisfactorily analyzed. In fact, it may not be adequately resolved for
some time, since complete specification of the Lighthill source terms re-
quires a solution of the Navier-Stokes equations with turbulence. However,
much progress has been made since the publication of the Lighthill analogy.

The first modification of the Lighthill formulation was by Phillips
(see [4]) who shifted some convection terms from the right hand side to the
left hand side, resulting in a second order convective wave equation. As
pointed out by Doak (see [5]), the Phillips formulation does not account for
all of the first order interaction terms between the fluctuating and mean
fields. However, the omitted terms are not generally considered important

at the higher frequencies where refraction predominates (see [5]).



A further extension of the Lighthill theory was obtained by Lilley
(see [6]). Lilley developed as his propagation operator (i.e:., as
his Teft hand side) a third order wave-like equation which explicitly
accounts for all of the first order interaction terms between the fluc-
tuating and the mean fields, including the shear interaction terms. The
left hand side of the Lilley equation is nothing but the Orr-Sommerfeld
equation for the stability of the mean flow and in fact is equivalent
to the Euler equations, linearized about the mean flow.

Several authors have studied the Lilley equation. Most of these
studies have been restricted to a parallel, transversely sheared mean flow.
Tester and Morfey (see [7]1), for example, obtained both numerical
and analytical results with sources modelled by quadrupoles. They computed
a strong amplification at mid-angles from the jet axis due to the shear
interaction. This work was restricted to parallel means flows. Mungur,
et al. (see [8]), on the other hand, studied the Euler equations
linearized about a spreading jet, using a semi-analytical approach. They
divided the region into spherical shells and obtained a sequence of
directivity modes in each shell. A difficulty of this method is that it
is not clear how to match the solution between shells and thus obtain the
solution due to a given source on the right hand side.

Further studies of the shear interaction terms were done using a
vortex sheet model for the mean flow. In this model, the shear interaction
terms are replaced by jump conditions at the interface. This model has
been studied with both fixed and moving sources. As the disturbance inter-
acts with the vortex sheet, the vortex sheet becomes unstable (Mi]e§ (91,
Ribner [10], Mani [11], and Dowling et al. [12]). It has been shown that

such an instability can lead to significant amplification of sound in



supersonic flow. This is especially true when the acoustic coupling between
opposite sides of the vortex sheet becomes large (Howe [13]). These studies
were restricted to parallel or weakly nonparallel f]ows.‘ Michalke [14]

has computed far field sound from localized, temporally growing, instability
waves in a plane free shear layer.

Experiments by Vlasov and Gihevskiy [15] have shown that local insta-
bility waves in a jet can be excited by acoustic disturbances. This was
confirmed analytically by Tam [16]. Moore [17] and Bechert and Pfizenmaier
[18] have shown that broadband sound can be increased when a jet is excited
by an acoustic wave impinging from upstream of the nozzle. Kibens [19]
acoustically excited the jet at the tip of the nozzle and also obtained an
increase in the far-field sound accompanied by a near-field pulsation of -
the jet. These results support the conjecture that instability waves can
significantly amplify sound.

In the present paper, the effect of the flow on the total power output
of an acoustic source in the potential core of the jet will be considered.
Since only the result of the interaction between the acoustic field and the
jet is to be studied, no attempt will be made to model the real sources of
the jet. It will be shown both numerically and experimentally that a signi-
ficant increase in power output occurs at Tow frequencies where the instabili-
ty waves are known to have the largest growth rate (see [20] and [%1]).

The numerical simulation will be obtained by solving the full, time
dependent Euler equations, linearized about a realistic model of a spreading
jet. The acoustic perturbations are thus obtained as the so]utfon to a hyper-
bolic initial value problem. In all cases, the initial data for the perturbed

quantities will be taken as zero; i.e. the system is started from a state of



rest. In principle, the problem is posed without any boundaries; however
artificial boundaries are required in order for numerical computations to
be feasible. At these boundaries appropriate approximations to the Sommer-
feld radiation condition must be imposed. The éystem to be solved will
contain all of the first order interaction terms between the acoustic field
and the mean flow. This permits computation of a more complete interaction
than can be obtained from computations of classical refraction effects

(see [22] and [23]1).

The acoustic perturbations will be assumed to be generated by a source
which will be represented by a forcing term on the right hand side of the
equations. The source will be switched on smoothly from zero forcing at the
initial time. If the longitudinal variation of the mean profile is neglected
at any fixed downstream location, the homogeneous system admits instability
waves which are well known from linear stability theory. If 1z, r and ¢
the aximuthal angles, then the instability waves have the form

p(t.2,r,0) = elutgalw)z inde , (1.1)
where the longitudinal wave number o(w) and the profile f(r) are obtained
by solving the Orr - Sommerfeld equation. In the numerical simulation only
axi-symmetric disturbances are computed, so that only the effect of waves with
n =0 can be considered.

Since the mean profile has an inflection point, there always exists
solutions with the real part of o positive; i.e. solutions which grow
exponentially in z. For most regions of the jet the axi-asymmetric hode
(i.e. n=20 1in (1.1)) is known to be the most unstable mode so that the

restriction to axi-symmetric disturbances is reasonable (see [21]).



Global solutions of the form (1.1) are not present in the far field
because they do not satisfy the Sommerfeld radiation condition and also
because the instability of the jet grows weaker as the jet spreads out.

In fact, it is well known that instability waves in a spreading jet tend
to decay after a certain distance downstream (see [20]). However,

if the source is near the jet exit, where the jet is most unstable,
exponentially growing waves may be expected to be present near the source.

It is the purpose of this paper to demonstrate that the behavior of
the far field sound, in particular the amplification of the total far field
acoustic power, has characteristics similar to those predicted by linear
stability theory applied to the given profile near the source. This will
be demonstrated both experimentally and numerically. The conclusion is
that acoustic sources generate and excite local instability waves which
contribute to an increase in the far field sound.

In section 2, the governing equations are introduced. Details of the
numerical scheme and the numerical boundary conditions are given in sections
3 and 4. In section 5, the experimental configuration is described. Results

and discussion are presented in section 6.

II. GOVERNING EQUATIONS

The equations of fluid flow can be written as a first order system

%% + div(pv) = 0

AP oV ; oe. .
0 ( LI 1) s 0P . 1]

ot J ayj ayi Byj

(2.1)




Here p 1is the density, v the velocity, p is the pressuré anq eij the
viscous stress tensor. In the system (2.1) and in the sequel, use is made
of the summation convention on repeated indices.

We now divide the flow variables into mean and f]uctuating parts. We

thus write

where the bar denotes a mean quantity independent of time.

We rewrite equation (2.1) as a system for the fluctuating quantities

30"y d4iv(p'0) + div(pu') = -div(p U) - div(p'u')

ot
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Before proceeding to give physical meaning to the system (2.3), we’
reformulate it by replacing the fluctuating density p' by the fluctuating
pressure p' which is the more natural acoustic variable, (see [5]1). We
assume that the flow is isentropic and has no mean temperature gradient.

It then follows that

p=~ApY (2.4)
or
o = Eoro(p?) = Bsv g, (2.5)
C0 C0

where o is the ambient speed of sound (constant under the above assumptions)
and q 1is some quadratic term. We can then replace p' in (2.3) by p' and

get

—l§-§E- + ;l?-div(p'65 + div(pu') = -div(p U + o'u’ + qU) - %9 ;

ot t
C0 0
| ) m m
p<au1 .5 u; o 3U1>+ p.z_u_ U, .
ot J oy, Jj ooy, j oy 9y,
J i/ <, J h]
_ _ (2.6)
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The system (2.6) has on the left hand side all of the first order inter-
acting terms between the fluctuating and mean quantities (provided q as

given in (2.5) is quadra*tic, which will be the case if the jet is isentropic).



The terms on the right hand side are considered as the source terms and are
all of higher order. (Not all of these terms are of equal importance in the
generation of sound, see [61]).

In this study, it is assumed that an artificial source is injected into
the jet and that the magnitude of this source is much larger than the real
sources in the jet. Therefore, the system (2.6) will become the following

inhomogeneous linear system

_l?'%£?'+ .l?-div(p'ﬂ) + div(pu') = f](t,x,y,z) R
c Cc
0 ) (2.7)

ou.'  _ duy' U, U,
T, 0, =3 +u,r L)s B :
J c

ro
= |
-
+
QL
=]
i

P\t ;3 o g; (tax,y,2) .

For this study, the forcing terms will be chosen as

F(t,x,y,2) = F)8(Ix - x|)

gi(t,x,y,z) =0 .

where X, is a given axial point downstream of the jet exit. The function

f(t) ds chosen to give rise to a pulse-like solution and has the form

-(at2

+ j%)
£(t) = e t

t>0 >

for suitable (positive) constants a and b. The §-function is modelled by a
Gaussian. This source corresponds to a monopole source if there is no flow.
As mentioned previously, it is not the intention to model the real sources in
the jet, but rather to study the interaction between an acoustic source and

the mean flow.



The system (2.7) is a linear first order hyperbolic.system which in-
cludes all of the first order terms for the fluctuating field in response
to the given input forcing term. The fluctuating quantities will have
dominant irrotational component in the near field which decays inversely
with the fourth power of the distance and is, therefore, important only in
the near field (see [24] and [25]). Farther from the source, the mean
square fluctuating velocity will decay with the second power of the dis-
tance thus reducing to a purely acoustic field.

If a parallel transverse mean flow is assumed, then (2.7) can be
reduced to the third order Lilley equation. This is not efficient for
a full numerical solution. In this work, we will use a realistic jet
velocity profile of an axially symmetric spreading jet obtained by
Maestrello ([25]). Assuming an axially symmetric source on the right hand
side, the fluctuating solution to (2.7) will also be axially symmetric and
thus the system (2.7) can be reduced to a system for three dependent vari-

ables, the fluctuating pressure p', and the fluctuating axial and normal

velocities u' and v'.
It is clear from the system (2.7) that in order to correctly simulate a
real jet, both the type and the location of the sources for a given mean flow
are important (as pointed out in [12]). In the present paper, we will study
the phenomena of interaction for a fixed type of source, and the dependence of

this interaction on the location and the mean velocity.

ITI. NUMERICAL SCHEME .
In this section, we discuss the numerical scheme used to solve (2.7).
We will use z and r as cylindrical coordinates along the axis of the jet
and normal to the jet respectively. A typical computational domain is shown

in figure 1. In this figure, the computations are conducted in the piecewise



rectangular region downstream of the nozzle boundary and bounded by the
far-field boundary. The solution for 1arge:times is extremely sensitive
to the far-field boundary conditions and these as well as the boundary con-
ditions at the nozzle boundary will be discussed in the next section. Note
that the shear layer is not a boundary. The mean profile of Maestrello
models the shear layer as a continuous function (see [25]1). Coordinate
stretching is used to increase the resolution in the vicinity of the shear
Tayer and the sources.

To describe the numerical scheme, we will rewrite the system (2.7) in

simpler form by assuming that

P = P, = constant . (3.1)

The assumption (3.1) is reasonable for investigating the interaction
phenomena. With this assumption, and dropping the primes and the bars for
simplicity, we obtain the following linear first order system (with'sound

speed Co and ambient density po)

2
VoP * Vogcy

2 2
Py * (UOp*'VDOCO)z * (VOP*'VDOCO)r + T = f ;
P - - ) ;
uy + (U0u+po)z + (VO“)r “VO,r VUO,r ; (3.2)

Py = -
Vi * (Uov)Z + (V0v+p )r VUO,Z uV0

0 sz

where U0 and V0 are the mean axial and radial velocities respectively,

and the subscripts denote differentiation. The solution is assumed to start

-10-



from a state of rest, i.e. p, u, v=0 at t = 0. The above system can be

written in the following symbolic form
w, + F, + G, =H , (3.3)

where w is the vector (p,u,v) and F, G, H are explicit functions which
can be obtained from (3.2).

To advance the solution from time t to t + 2At, we use the method of
time splitting (see 26 ). Thus, if LZ(At) and Lr(At) denote symbolic

solution operators to the one-dimensional equations

W + F_ =H
toz (3.4)
2 -
Wiy + 6= Hy
then the solution to (3.3) is advanced by the formula
w(t + 2at) = LZ(At)Lr(At)Lr(At)LZ(At)w(t) (3.5)

This procedure is second order accurate in time, (i.e., the truncation error in

(3.4) is 0(t3).)

Using the method of splitting, one employs spatial discretizations
solving only one-dimensional system. It was soon realized that a high
order accurate shceme was essential to resolve the solution up to the

far field. We thus use a scheme developed by Gottlieb and Turkel [27],

which is fourth order accurate in the spatial variables. For the one-

dimensional equations in (3.4), we_have

-11-




) + AtH

1+2
(3.6)

— A, oF = = m
wo(t 4+ at) = 35w, (t) + wy(t + At) + Z(-TF, + 8F; 3 - Fi ) + AtH;)

here F} denotes F eva]uated at Eh etc. Further details can be found in
[26]. The scheme based on (3.6) can be implemented on the CDC STAR-100 with
great efficiencies.

Since the solution is required at many jet diameters (~ 50), a large
number of grid points is required for accuracy. This restricts the
applicability of the method to cases where the wave length is of the order of
the nozzle diameter. If only time harmonic solutions are of interest, the

solution of the time dependent equations can be regarded as a relaxation scheme

to obtain the time harmonic solution. In this case convergence is achieved
by integrating until the transient has passed out of the computational domain.
A solution of the time harmonic problem by direct methods is not possible
because of the large number of unknowns involved. Assuming a single wave

solution of the form

A(X)eikS(x)

for slowly varying real quantities A and S, as done in references [22] and
[23] is not feasible, since multiple waves can be expected to be present due

to interaction with the shear layer.

IV. BOUNDARY CONDITIONS
Our experience has indicated that a very important feature in obtaining
accurate solutions is the correct specification of the boundary conditions. We
point out that the problem is posed in the spatially infinite region without

the far-field and nozzle boundaries in Figure 1. These artificial boundaries

-12-



are necessary only for the purposes of numerical computation. Care must be
exercised to prevent false reflections generated at the boundaries from moving
in and destroying the solution.

As indicated in the figure, two types of artificial boundaries are
present. The far-field radiation boundary where an approximation to outgoing
waves must be specified and the nozzle boundary where one must stipulate that

no acoustic energy flows down the pipe into the computational domain.

We first deal with the far-field radiation boundaries. It is clear that
if U0 vanishes in (3.2), then p will satisfy the wave equation. Spherical

outgoing waves have the form
p(t,d) = fct-dy/d | (4.1)

where d = |x| and x denotes the spatial position. The formula (4.1) was
extended to general solutions of the wave equation by Friediander (see [28])
who proved that under certain conditions p would have a convergent expansion

of the form

p(t.d) = jzl fi (teg-d,0)/ 3 (4.2)
where 8 1is the polar angle (axial symmetry is assumed). Less restrictive
conditions under which (4.2) is valid as an asymptotic expansion are given by
Bayliss and Turkel [29].

In order to derive boundary conditions to match the solution to (4.2),

we introduce the operator

. 9 9
L=x5* ¢g5g > (4.3)

-13-



and point out that, in the case of harmonic time dependence of frequency, the
operator (4.3) reduces to

. 3
CO('1k + ga) s

where k = m/c0 is the wave number. Then, the statement

Lp+0 (d—»oo) ,

is exactly the Sommerfeld radiation condition. However, at a finite d, the
relation

Lp =0 >

is not exact even for the first term in the expansion (4.2) (or for a spherical

wave (4.1)). If, however, (4.3) is modified by introducing

Cc
- 0
B-I"L+d 3

then it is easy to verify that

Bip =10 > (4.4)

is exact for the first term in (4.2) or for (4.1). This is, therefore, the-
appropriate, finite form of the Sommerfeld radiation condition.

In general (4.4) will not be accurate if the boundary is close in and if
the sources are not monopoles. To obtain accurate boundary conditions in
these cases, we extend the operator B] to annihilate more terms in the

expansion (4.2). In fact, introducing the operator

2i-1)
0 d

i

(L+c
1

(L+c

QZjJ 1))

[ve]
H
=

0
J

-14-



it can be easily verified that Bm annihilates exactly the first m term$  '
in the expansion (4.2).

It can also be shown (see [29]) that the boundary conditions
Bmp =0

give rise to well posed problems in the cylindrical region of Figqure 1. The
second order operator has been applied to the study of several sources in a
jet and quadrupole sources where (4.4) is not sufficiently accurate. For
most of the work reported in this paper, the accuracy of (4.4) has been veri-
fied by computing the solution with different boundaries and comparing the -
solution at fixed interior points. It has also been verified that direct
app]ication“of the Sommerfeld condition is .very inaccurate.. ”

It is finally bdin%ed out that, since the fluctuating velocities are
dependent variables, it is.pgssible to use (2.5) (with Ug = 0 in the far

field) to obtain

P -
ad P

[$BReb)
L =13

0

where U 1is the radial velocity. Thus, (4.4) can be replaced by the condition

L Cap
b ou . -0
5t ~ Po 3t * d

=0 ,
which can be implemented without spatial differences.

We next consider appropriate boundary conditions in the nozzle.
Physically, it is intended to simulate a semi-infinite pipe of constant

diameter. This is a reasonable assumption since the numerical sources are

located in the jet. The bodndary condition must ensure that no acoustic

-15-



information travels down the pipe into the free space. We assume that in
the pipe the mean flow U0 is constant and is purely axial. (We will then
have U0 = Mc0 where M is the exit Mach number of the jet.) The system
(2.5) then becomes

_R _E u 2. v, 2 V_gq.
+ U BB+ Bog W+ cfog *copg v = 05 (a)

Ly, W, 1.,

sstUgsz * og 32 0 ; (b) . (4.5)
W,y 3V, 13D .

§‘f+anz+poar o . (c)

The system (4.5) can be reduced to a convective wave equation for p,

2 2
ap %, 2 8% =
at2 + 2U0 7ot ¥ U0 2 c-Ap=0 , (4.5d)

where A =V « V. If the pipe has diameter D, then the radial boundary

conditions for p are

L=o(r=30) ,  (a)
(4.6)
§§=ow=0) (b)

The condition (4.6a) is equivalent to the condition v = 0 on the pipe

wall, while (4.6b) is a consequence of axial symmetry.

-16-



We now look for solutions to (4.5d) with the dependence
p = o'Wt o1z h(r)p R (4.7)

where the frequency w 1is taken positiVe."The condition for modes to

propagate up the pipe is
Real Part & > 0. - (4.8)

Upon substituting (4.7) into (4.5d), we obtain an equation for h,

L(rh")' +2h=0 (4.9)
where
2 2,. 2 ® Yo
A=KE+2KM-5(1-M) 3 k=L, M=—= | (4.10)
o o

The solution to (4.9) satisfying (4.6b) is

h(r) = 3,(x%r)

and thus the values of A are restricted to a discrete set {An}, such that

L
Anz is twice the nth zero of Jo'. Solving (4.11) for & results in the

formula

Mt /K2 + (k2 - A1 - HE)
Q’n = (4.]])
2)

(1-m

-17-




Thus, for any k, there are only a discrete set of modes present in the duct,
with Jongitudinal wave numbers given by (4.11).

If n=0, An = 0, (4.11) yields

(2.12)
g = K (b)

and (4.8) implies that only (4.12a) corresponds to a mode traveling up the
pipe. For n > 0, & will not be real for sufficiently small k. In fact,

this will be so provided
k= / N /1 - (4.13)

and v N G 7.66 (twice the first zero of Jo'). For these values of k, the

unstream propagating modes will decay exponentially as the distance up the
cipe increases. It then follows that upstream of the nozzle, if k is
restricted by (4.13), the mode given by (4.12a) will describe the upstream
nropagating solution.

It only remains to describe the velocities associated with (4.12a) so
that appropriate boundary conditions can be obtained. It follows from

A, = 0 and (4.5c) that v = 0. Upon setting
g = eiwteilzh(r)a
and substituting into (4.5b) (making use of (4.7)), we obtain

wa+zuoa+pi6=o ,
0

and from (4.12a) we obtain

~18-



coPpl * P =0 ,

i.e. Co U *+ P The resulting boundary conditions in the nozzle are thus

!
[}

CoPpU * P = (a)

v =0 (b) (4.14)

The boundary conditions (4.14) are generally applied at the same distance
upstream as the far-field boundary. Of course, inkprinciple the problem of the
nozzle boundary can be avoided by taking the nozzle boundary sufficiently
far upstream so that no spurious reflection can occur during the time that it
takes for the pulse to pass through the computational domain. This, however,
would severely complicate the program. In practice extensive numerical experi-

mants have revealed virtually no effect on the far-field solution by applying

the conditions (4.14) at any distance upstream of the exit pipe. This is
probably due to the exponenfia] decay of the higher modes and the fact that

very Tittle energy propagates upstream of the nozzle exit.

V. EXPERIMENT

Measurements of the time dependent pressure in the far field were made
inside an anechoic chamber about an arc of 5.79 m from the source. The source
consisted of a 1.0 cm diameter tube exiting from the center of a standard
convergent type nozzle with diameter D = 5.08 cm. The tube extends downstream
1.25D from the nozzle exit. Upstream, the tube extends into the settling
chamber, diverges and exits through the sett]inj chamber to the outside. The
mean flow profile and the experimental configuration are shown in figure 2.
The profile has a virtual origin (Zo) at 2.57 D upstream of the’nozzle exit
and a spread of nearly 11°. In the fiqure, Uj denotes the jet exit velocity.
The static pressure shown in the figure has not been included in the numerical

calculations at the present time. Further details can be found in [25].
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Two types of sources were studied. A pure tone was generated by using
an acoustic driver at the end of the tube. A pulse was generated by using a
conventional shock tube“tyhe of chamber with a diaphragm. The pulse is created
by breaking the diaphragm. The pressure across the diaphraam exceeds 100 psi
(6.3 x 105 pascal). :

Because of this high pressure, the amplitude from the pulse was
greater than the noise produced by the jet flow for the}conditions tested
by 30 dB. The high pressure of the pulse also insured that the power out-
put from the source was unaffected by the presence of the flow. It was not
possible to generate a pure tone with output unaffected by the flow and thus
only the pulse will be considered further.

The temperature in the jet was ambient and tests were conducted at exit
Mach numbers ranging from 0.33 to 1.2. At an exit mach number of .66, the
Reynolds number of the jet, based on the diameter, was approximately 8 x 105.
Two different sizes of condenser type microphones were used independently.
Their diameters were 1.25 cm and 0.63 cm. The microphones were verified to
have a flat response in the range of frequencies considered. Only the data
obtained by the 1.25 cm microphones are considered, because no difference
in ~ither frequency response or amplitude level was found between the two .
different size microphones.

The microphones were placed at 10° intervals between 10° and 130° from
the direction of flow. The acoustic pressure was recorded on an FM maénetic
tape recorder in the range 25 Hz to 40 kHz although the data presented in
this paper only cover the range 200 Hz to 15 kHz. Data reduction was accom-

plished using both analog and digital means.

-20-



VI. RESULTS AND DISCUSSION
Experimental and numerical results are preseﬁted for the faréfié]d
acoustic pressure. These results include: o
a) The real time pressure pulse both with and without flow,
b) The intensity as a function of the angle 6 for a range of Strouhal

numbers. (St = %Q where f 1is the freauency and D the jet diameter),

J ,

c) The acoustic power integrated over a large far-field sphere as a
function of Strouhal number,

d) The acoustic power integrated over a large far-field sphere as a
function of Strouha] number based on the source position for different source
Tocation.

e) In-flow amplification rate of the longitudinal fluctuating velocity.

Figures 3a through 6b show the nondimensional far-field time dependent
puise p(t), with and without the flow through the nozzle, for both the
~xn2rimental and the numerical simulation. Figures 3a and 3b show the
evnerimental results for 6 (measured from the jet axis) between 10° and
1300 without flow. It is clear from the figure that the experihenta] source
is not omni-directional. In fact, the peak output occurs near the jet axis
and decr=ases nearly uniformly as the angle 6 increases. It is known
(see Grande [30]) that, at low pressure, the output from the tube is
omni-directional (at least for low frequencies). However, at such high
pressures, the experimental source is not a monopole. |

Figures 4a and 4b show the pulse with the flow at an exit Mach number
of 0.66. The effect of refraction of sound through the shear layer is
clearly noticeable by the stretching out of the pulse and by the decay in
amplitude at Tow angles from the axis of the jet. At mid angles (i.e.

6 = 30°), both positive and negative peaks well exceed the amplitude of the
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no flow case indicating a Tow frequency amplification, a phenomena not
totally accountable by classical refraction theory. The high frequency
oscillations after the meain peaks are also strongly reduced.

Figures 5a and 5b show the numerical counterpart with no flow for angles
from 0° to 170°. As can be seen, the input source is nearly omni-directional
and thus can be considered a monopole source. The experimental source on the
other hand, contains both a mass and a force fluctuation as can be seen in
figure 3. At present, the numerical simulation has only been run with monopole
sources, since the monopole will exhibit qualitative agreement with the
experiment. The time duration of the numerical pulse is nearly twice as
1onqg as the duration of the experimental pulse. This was necessary because
nf pnumerical d4ifficu tins in comprting narrowe~ pulscs at Targe distances from
the source. |

Figures 61 and 6b chow the pulse with flow (zvit Mach number .66). As
with the exnerimertal pulse, the effect of refraction is noticeable by a
severe stretching out of the pulse accoripanied by a decay in amplitude at low
angles from the jet axis. It is also clear that an increase in amplitude,

similar to that measured in the experiment, occurs at mid angles.

The previous figures indicate the possibility of amplification of sound
in the presence of flow. In order to quantify the amplification or attenua-
tion of the sound due to the flow, a comparison is made of the power ratio
with and without flow. The power output is computed around a large spHere
surrounding the source. However, a small amount of acoustic energy propagates
upstream through the nozzle. This additional energy flux through the nozzle
is computed by the following formula (see Goldstein [31]1):

- ]_ | 't ] '
I= o (p* + pgu'=Uy)(pgu' +p'Uy) (6.1)
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which is the acoustic intensity in the presence of an irrotational mean flow.
Here, the primed quantities denote the_acoustic pérturbation while UO and
Py denote the mean velocity énd density. The energy flux through the nozz]g
is computed upstream of the nozzle exit as indicated in figure 1. |

At the upstream nozzle boundary, we use (4.4) with (6.1) to obtain the

following total acoustic intensity in the upstream z direction

2 (o]
o= A=M" 25 (6.2)
T pgc

-00

An experimental attempt was made to measure the acoustic power due to

the pulse upstream of the nozzle, using two microphones inside the settling

chamber. The output from the microphones, during and immediately after the
burst, showed an insignificant increase in level from the background. This
jndicated that very little sound is propagated upstream. The numerical com-
putation of the power upstream through the nozzle also showed that this was
always much less than 5 percent of the total acoustic power.

In the far field (6.1) together with the boundary conditions discussed
previously, yields the well known result

o0

1 o2
I, = pOCO.)/. p2(t)dt (6.2)

-00

for the total intensity in the radial direction at a point on the far field arc.

In the frequency domain, the intensity per unit frequency at an anQ]e g s

A 2
I(6,w) = 0,0) : w=2nf |,

0%
where p(6,w) 1is the Fourier transform of the pressure pulse.

Figures 7a and 7b show the experimental acoustic intensity ratio

I(e,f)ﬂow/l(e,f)no £low (where w = 2nf) for various Strouhal numbers, as
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a function of the far-field angle 6. The figures show that the maximum
amplification occurs at about 30° from the jet axis for all of the frequencies
plotted. For some of the frequencies, there is also an amplification at

130°. There is, however, very little energy present at large angles and thus
this does not affect the total acoustic power. It is noted that the angle

of maximum intensity is relatively insensitive to frequency, a feature that
would not be expected from classical refraction theory..

Figure 7c¢ shows the numerical counterpart of the previous figures. The
peak amplification now occurs at about 40° because the numerical pulse is
omni-directional. Since the numerical computation is restricted to a broader
pulse, the numerical results are limited to the Tow frequency part of the
spectrum. In this range of frequencies, the numerical and experimental results
are qualitatively consistent.

Figures 8a and 8b show the: power ratio w(f)f1ow/w(f) for both

no flow
the experiment and the numerical simulation, as a function of Strouhal
number based on jet diameter (fD/Uj). The evaluation of the experimental
acoustic power is limited to an arc between 0° and 130° from the direction
of flow. The experimental pulse is very weak for angles approaching 130°
(see figs. 3a, b and 4a, b) and thus the higher angles make a negligible con-
tribution to the total power. The numerical computation of the power includes
all angles up to 170° at 10° intervals together with as the power propagating
upstream of the nozzle. There is virtually no difference in the power ratio,
when it 1s summed at 5° intervals.

The experimental curve shows power amplification up to fD/Uj = 1.2 with
a maximum at fD/Uj = .4, In addition, there is a reduction for fD/Uj
greater than 1.5. The numerical curve shows an increase in power for

fD/Uj between .15 to .3 with-a peak at fD/Uj = .21 which appears to be

independent of the jet velocity. Since the numerical simulation cannot, at
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present, accurately compute higher frequencies, i.e. beyond a Strouhal
number of 1, the power reduction at higher Strouhal numbers cannot be
verified. It is believed that turbulent scattering will have some con-
tribution to this reduction. The numerical results also show an increase
in power ratio for fD/Uj of the order 0.1. This cannot be shown experi-
mentally because the far-field measurements would have to be taken at
several hundred diameters to account for the Tow frequencies and also
because the anechoic chamber is not an effective absorber at these frequen-
cies. This effect, however, can be seen in the experiment by observing

the stretching of the real time pulse with flow (see figure 4a). The total
power in this frequency range is very small for both the experimental and
numerical pulse.

The power ratio curves are sensitive to the pulse width and the dis-
tance of the source from the jet exit. However, when the power ratio is
plotted in terms of Strouhal number based on the distance of the source
from the jet exit (fz/Uj) it is found that the maximum occurs at a
Strouhal number nearly independent of source position. This can be seen
in figure 9 where the power ratio is shown for numerical simulations at
four different source positions. This would be difficult to do experi-
mentally and thus only numerical computations are presented.

The behavior of this far-field amplification is very similar to the
growth rate of instability waves in an unexcited jet. Such behavior has
been verified both experimentally and analytically (see [17] and
[20]). The results in Figure 9 indicate that virtually no amplification
occurs if the source is well downstream of the potential core, where in-
stability waves are known to be insignificant (see [20]). This

is clear evidence that amplification will occur only if the source is
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within or just after the potential flow core of the jet where instability
waves can be sustained. - In addition, the maximum amplification occurs at
roughiy 3 diameters downstream of the nozzle, which is consistent with the
experimental measurements in [20].

The present experimental results (Figure 8a) show a maximum amplifica-
tion rate at fz/Uj of about .6, which is twice the position of the numeri-
cal peak. This may be due to the fact that the numerical pulse is nearly
twice as broad as the experimental pulse, or that the numerical pulse is
omni-directional, or nonlinear interaction in the experiment. It is known,
however, that when a jet is excited harmonics and sub-harmonics may pre-
dominate (see [19]).

The results presented here support the hypothesis that an acoustic

source placed within the potential core of the jet excites instability waves,
the result of which is an amplification of the far-field sound. This is

also consistent with the experiments of Moore (see reference [17]1) and
Bechert and Pfizenmaier (see reference [18]) where an increase in broad-

band power was observed by acoustically exciting the jet upstream of the
nozzle.

The strong amplification at the mid-angles and at frequencies of maximum
power ratio is due to the terms involving the interaction of the acoustic’
velocities with the gradient of the mean flow (see (3.2)). If one omits
these terms in the numerical computations, a directivity pattern is obtained
which increases monotonically with the angle from the flow, similar to the
patterns obtained in [21] and [22]). This indicates that these terms are
very important in producing the power amplification. |

In order to demonstrate the presence of inflow instability waves in the

numerical simulation, the growth rate of the longitudinal fluctuating velocity
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u on the center line of the jet (r=0) was computed for a fixed source
position. Spatial instability waves for u will have the functional

form
G(w,z,r) = Ael@teid(2)Ze 1y (6.3)

where U is the Fourier transform of u, w the real frequency, o is a
complex wave number and f(r,w) 1is the corresponding eigenfunction (solution
of the Orr-Sommerfeld equation). Here z and r are the cylindrical
coordinates shown in Figure 1. Thus u was Fourier transformed and in
Figure 10 a plot of 1In li!ﬁ&%élgll in terms of longitudinal Strouhal number
fz/Uj is given for three different frequencies. Using the functional form
(6.3), this should correspond, to within a constant, to the growth rate
(-imaginary part of a) as-a function of z.

The behavior of this figure is consistent with the results presented by
Moore (see [171). This figure demonstrates that the growth rate of
the instability wave corresponds to the amplification rate of the far field
sound as shown in Figure 9. The agreement between the peak Strouhal numbers
in Figures 9 and 10, indicates that the most unstable frequency at the position
of the source corresponds to the most amplified frequency in the far field.

This agreement in frequency is due to the fact that the jet is excited by an

acoustic disturbance.

VII. CONCLUSION
An amplification of total power output is observed when a source is
located within the potential flow core of a jet. This amplification occurs

in the range of frequencies where the local instability waves have the
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strongest growth rate. The acoustic power amplification exhibits a peak
which is similar to that which is observed both experimentally and analy-
tically for instability waves in an unexcited jet. This is particularly
true when the amplification rate is plotted as a function of Strouhal number
based on the distance of the source from the nozzle.

Inflow computations of the fluctuating velocity show the presence of
instability waves which peak at the same frequency as the far field sound.
These results show that instability waves can act as a mechanism to amplify
the sound from an acoustic source. Further evidence is found in the fact
that no peak occurs if the source is far downstream of the potential flow
core. The experimental results are qualitatively in agreement with the

numerical simulation.
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Figure 3a. Far-field pressure pulse without flow (experimental)
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Figure 6a. Far-field pressure pulse with flow, M = 0.66 (numerical)
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